Z.eus

Chiu Yau's Log.

Maths – Differentiation (1)

Maths - Differentiation
Before start, limit of \(f\) when x-> \(c\) \(\neq f(c) \)
\( f(x) = \frac{x^{2}-1}{x-1} \) is defined everywhere except x=1

\( f(1) \) ?

\( f \) is not defined at \(x=1\)

When x close to 1, \(x\) -> \(1\)

f(x) close to 2, >>> \(f(x)\) -> \(2\)

\( \neq f(1) = 2 \)

Find limit from both left and right hand.


Definition of Limit

Left Limit

\(lim_{x \to c^{-}} f(x) = M\)

Example:

\( lim_{x \to 1^{-}} f(x) = 2 \)

Right Limit

\( lim_{x \to c^{+}} f(x) = N \)

Example: \( lim_{x \to 1^{+}} f(x) =2\)

Limit exists! When M=N


Existence of the Limit of a Function

\(f(1)=2\)

Left limit: \( lim_{x \to 1^{-}} f(x) = 2 \)

Right limit: \( lim_{x \to 1^{+}} f(x) = 2 \)

So, \( lim_{x \to 1} f(x) = 2 \)

\(g(1)=3\)

Left limit: \( lim_{x \to 1^{-}} g(x) = 2\)

Right limit: \( lim_{x \to 1^{+}} g(x) = 2 \)

So, \( lim_{x \to 1} g(x) = 2\)

\(y=f(x)\)

\(f(-2) = 2\) , just look at the black dot, there is no explanation for why “2”, this is how it works

Left limit: \( lim_{x \to -2^{-}} f(x) = 1 \)

Right limit: \( lim_{x \to -2^{+}} f(x) = 3\)

\( lim_{x \to -2} f(x) = \)does not exist as left \( lim \neq\) right \(lim\).

ONLY left limit equals to the right limit, limit exist.

Left limit when \( x \to 0^{-} \)

Keep trying values from the left.

\( f(-0.1) \)\( f(-0.01) \)\( f(-0.001) \)\( f(-0.0001) \)
\(= \frac{1}{-0.1} \)\(= \frac{1}{-0.01} \)\(= \frac{1}{-0.001} \)\(= \frac{1}{-0.0001} \)
\(= -10 \)\(= -100 \)\(= -1000 \)\(= -10000 \)
Keep on approaching 0 from the left, will gain a very large number.

\( \to lim_{x \to 0^{-}} f(x) = -\infty \)

Right limit when \( x \to 0^{+} \)

\( f(0.0001) \)\( f(0.001) \)\( f(0.01) \)\( f(0.1) \)
\(= \frac{1}{0.0001} \)\(= \frac{1}{0.001} \)\(= \frac{1}{0.01} \)\(= \frac{1}{0.1} \)
10000100010010
Keep approaching 0 from the right, will gain a very large number.

\( \to lim_{x \to 0^{+}} f(x) = +\infty \)

\( -\infty \neq +\infty \), therefore, limit does not exist.

Left limit when \( x \to 1^{-}\)

\(x\)\(0.9\)\(0.99\)\(0.999\)\(0.9999\)
\( f(x)\)\(1.9\)\(1.99\)\(1.999\)\(1.9999\)

\( \to lim_{x \to 1^{-}} f(x) = 2 \)

Right limit when \( x \to 1^{+}\)

\(x\)\(1.0001\)\(1.001\)\(1.01\)\(1.1\)
\( f(x)\)\(2.0001\)\(2.001\)\(2.01\)\(2.1\)

\( \to lim_{x \to 1^{+}} f(x) = 2 \)

\( lim_{x \to 1} f(x) =2 \)

We will not always check left lim and right lim in later, therefore, we have some tricks to check them.

\( lim_{x \to 1} \frac{(3x+2)(x-2)}{5x-2} = f(x) \)

not defined when \( x = \frac{2}{5} \)

Find limit:
\( \frac{[3(1)+2][1-2]}{5(1)-2} \)

\(= -\frac{5}{3} \)

Cannot directly sub 3 into x to check as it will become 0.

\( lim_{x \to 3} \frac{x^{2}-2x-3}{x-3} \)

\( = lim_{x \to 3} \frac{(x-3)(x+1)}{x-3} \)

\( = (3+1) \)

\( = 4 \)

It is nearly impossible to have \( \frac{0}{0} \) in any homework, quiz and exam, this is basically inviting you to factorise.

\( lim_{x \to 0} \frac{\sqrt{x+4}-2}{x} \)

\( = lim_{x \to 0} \frac{(\sqrt{x+4}-2)}{x} x \frac{(\sqrt{x+4}+2)}{\sqrt{x+4}+2} \)

\( = lim_{x \to 0} \frac{(x+4)-4}{x(\sqrt{x+4}+2)} \)

\( = lim_{x \to 0} \frac{x}{x(\sqrt{x+4}+2)} \)

\( = lim_{x \to 0} \frac{x}{x(\sqrt{x+4}+2)}\)

\( = lim_{x \to 0} \frac{1}{(\sqrt{x+4}+2)} \)

\( = \frac{1}{(\sqrt{0+4}+2)} = \frac{1}{4}\)

\( lim_{x \to \infty} \frac{1}{x} \) :it will get smaller and smaller, and 0 finally.

\( lim_{x \to \infty} \frac{1}{x} = 0 \)

\( f(x) = \frac{1}{x} \)

\( f(100) = \frac{1}{100} \)

\( f(1000) = \frac{1}{1000} \)

\(g(x)=x \)

\( lim_{x \to \infty} g(x) = +\infty \)

\(lim_{x \to +\infty} [\frac{1}{2^{x}} + \frac{1}{x^{2}+x}] \)

\(lim_{x \to +\infty}[\frac{1}{2^{x}}] + lim_{x \to +\infty}[\frac{1}{x^{2}+x}]\)

\(0+0=0\)

Example:

\( f(10) = \frac{1}{2^{10}} + \frac{1}{10^{2} + 10} \)

\( lim_{x \to \infty} [x^{4} – \pi x^{2}] \)

\( = lim_{x \to \infty} x^{4} – lim_{x \to \infty} \pi x^{2}\)

WRONG!!!

\( ~ lim_{x \to \infty} x^{4} = \infty\)

\( \to \) limit does not exist.

\( lim_{x \to \infty} \frac{2x^{3}+3}{3x^{3}+1} \)

Tips: always the guy with the highest power.

\( = lim_{x \to \infty} (\frac{2x^{3}+x}{3x^{3}+1}) (\frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}) \)

— As of 2023-09-19 19:30

___ Start from 2023-09-26 16:50:23

Slope of any function = derivative: \( \frac{df}{dx} = f(x) = y’ \)

Differentiation Rules:

  1. \( \frac{d}{dx}(C) = 0\)
  2. \( \frac{d}{dx}(x) = 1\)
  3. \( \frac{d}{dx}(x^{n})=nx^{n-1} \)
  4. \( \frac{d}{dx}[u(x)+v(x)] = \frac{d}{dx}u(x) + \frac{d}{dx}v(x) \)
  5. \( \frac{d}{dx}[Cu(x)] = C \frac{d}{dx}u(x)\), C is constant.

Leave a Reply

Your email address will not be published. Required fields are marked *